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Abstract: The least squares regression of data with error 
in x and y should not be implemented by ordinary least 
squares (OLS). In this work, it is discussed orthogonal 
distance regression (ODR) as an alternative approach in 
order to take into account the uncertainty in x variable. 
The first example, comparison of two methods, shows that 
ODR technique leads to a difference conclusion than t-
test. The second case study, an analytical curve, shows 
that when the variance of the replicates in a single x value 
is tiny, when compared with the variance from x variable, 
there is no significant difference between ODR and OLS 
coefficients because the uncertainty is negligible in x-axis. 
  
Key words: orthogonal distance regression, least squares 
regression, uncertainty in both variables, equivalence of 
the methods. 

1. INTRODUCTION 

Classical univariate regression is the most used 
regression method in Analytical Chemistry. It is generally 
implemented by ordinary least squares (OLS) fitting, 
using n points ( )iy ,ix  to a response function, usually 

linear [1] and handling homoscedastic data. In this way, it 
is estimated the amount of the unknown ( )0x  from one or 

more measurements of its response ( )0y . The algorithms 

for carrying out such analytical curve have been well 
established in the literature. When the data are 
heteroscedastic, the Analytical Chemistry uses weighted 
linear regression. 

But a problem remains in the analytical community: 
the uncertainty in x-axis. Classic linear regression, 
available in commercial softwares, assumes that x variable 
errors are negligible, that is, error-free [1-2]. 

As analytical methods usually have to be applicable 
over a wide range of concentrations, a new method is 
often compared with a standard method by analysis of 
samples in which the analyte concentration may vary over 
several powers of ten. In this case, it is inappropriate to 
use the paired t-test since its validity rests on the 
assumption that any errors, either random or systematic, 
are independent of concentration [3]. Over wide ranges of 
concentration this assumption may no longer be true. A 
second problem appears when, certified reference 
materials are not available, and that usually has negligible 
uncertainty, in order to carry out an analytical curve. So, 

beyond the uncertainty derived from the signal, it must be 
considered the uncertainty from x-axis. In these cases, 
OLS should not be used, so the literature suggests 
carrying out orthogonal distance regression (ODR). The 
aim of this work is to suggest how to handle these cases 
when uncertainties in both variables are considered. 

 

2. METHODOLOGY 

2.1. General 

Generally, it is assumed that only the response 
variables, y , is subject to error and that the predictor 

variable, x , is known with negligible error. However, 
there are situations for which the assumption that x  is 
error free is not justified. In these situations, it is required 
regression methods that take the error in both variables 
into account. They are called errors-in-variables 
regression methods. 

If iη  represents the true value of iy  and iξ  the true 

value of ix , with iε  and iδ  the experimental errors, 

respectively, then: ( )1110 δε bxbby iii −++= , where the 

last term represents the experimental errors. The fitted 
line is then the one for which the least sum of squared, 

sdi , is obtained and the method has been called 

orthogonal distance regression (ODR). This is equivalent 
to finding the first principal component of a data set 
consisting of 2 variables and n samples [4]. 

 
2.2. ODR statistics 

The expression of the function of the likelihood 
method, when it is considered n pairs of values (xi, yi) and 
a multidimensional model suitable to describe 
experimental data fluctuations, is the multivariate normal 
[5]: 
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Both variables are affected by random measurement 

errors: x variable, 2
ε

2
σσ

iix = and y variable, 2
δ

2
σσ

iiy = . 

If it is considered that both variances of the variables 

are constant, θσ2 =x  and its known rate is λ. This ratio 

can be defined as:  

θ

λθ

σ

σ

σ

σ
λ

2
ε

2
δ

2

2

===
x

y                           (2) 

Applying (2) in (1): 
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And its logarithm is given by: 
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Maximizing (4), the log likelihood function, in relation 

to the disturbing parameters [6], 
ixµ̂ : 

( )
2βλ

αβλ
µ̂

+
−+= ii

x
yx

i
                         (5) 

Substituting equation (5) in equation (4), it is obtained 
the profiled log likelihood function that is function only of 
α, β and θ. 

Deriving this new equation in relation of these three 
parameters and equalizing the derivatives to zero – the 
approach of Deming [7] estimates 1b , equation (6): 
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With 2
ys  and 2

xs  the variance of y  variable and the x  

variable respectively;  

( ) ( )( )( ) ( )1,cov −−−= ∑ nxxyyxy ii  the covariance of 

y  and x . 

Since both variables are affected by random 
measurement errors and the simplest case is when 

22
δε σσ = , an unbiased estimation of the regression 

coefficients can be obtained by minimizing ∑ 2
id , i.e. 

the sum of the squares of the perpendicular distances from 
the data points to the regression line, where id  is 

determined perpendicular to the estimated line [4]. 
The expression for 1b  and 0b  are: 
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2.3. Confidence intervals 

To test for bias, i.e. equivalence of the methods 
compared, the 95%-confidence intervals of the parameters 
from the linear equations xbby 10 += obtained after the 

orthogonal regression were used to test whether the 
optimal parameters of 00 =b and 11 =b are included in the 

spanned confidence intervals (CI) [8]: 
( )

0,00 bfP stbbCI ×±= and ( )
1,11 bfP stbbCI ×±=     (9) 

t = Student t-factor with: p= 95%; 2−= nf ; 
0bs and 

=
1bs standard deviation of the parameters 0b and 1b . 

The ideal values of a 00 =b  and 11 =b  imply no bias 

between the compared methods, i.e. equivalence in the 
calibration results. A fail of the test for the axis intercept 

0b  imply a systematic bias, e.g. caused by a wrong blank 

correction of one method. If the test fails for the slope 1b , 

this implies a proportional bias. Combinations of the two 
errors can also appear. 
 
2.4. OLS versus ODR 

 Mandel [9] considers an approximate relationship 
between the ordinary least squares slope, ( )OLSb1 , and 

the orthogonal distance regression slope, ( )ODRb1  in 

(10): 
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Where 2
exs  is the variance of a single x  value 

(involves replicate observations of the same x ) and 2
xs  is 

the variance of the x  variable. 

Table 1 shows the relation between 2
exs  and the ratio 

( )
( )OLSb

ODRb
1

1 , when a perfect system is considered, 

that is 2
xs  is constant and equal to 1. 

 

Table 1. Relation between 2
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( )

( )OLSb
ODRb

1

1  

0.00 1.00 
0.01 1.01 
0.10 1.11 
0.20 1.25 
0.25 1.33 



0.33 1.50 
0.50 2.00 
0.70 3.33 
0.90 10.0 

 

 Figure 1 shows that 2

2

x

ex

s
s  and ( )

( )OLSb
ODRb

1

1  

have a behavior that is close to the linearity, when the 
variance of a single x  value is lower than the variance of 
the x  variable that is from 0.0 to 0.2. 

y = 1.2239x + 0.9973
R2 = 0.9976
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Fig. 1. Linear relation between 2
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 When the 2

2

x

ex

s
s  increases up to 0.5, the best 

regression seems to be quadratic, Figure 2. 

y = 2.5171x2 + 0.6976x + 1.006
R2 = 0.9987
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Fig. 2. Quadratic regression between 2
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 As 2

2

x

ex

s
s  gets close to the unity, ( )

( )OLSb
ODRb

1

1  

grows rapidly up to infinity, Figure 3. 
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Fig. 3. ( )
( )OLSb

ODRb
1

1  tending to infinity 

 

3. CASE STUDIES 

Two case studies using ODR are discussed, in this 
work. At first, a catalytic fluorimetric method is compared 
with a photometric technique for the determination of the 
level of phytic acid in urine samples and secondly, the 
regression of an analytical curve for the determination of 
copper content in waters by Flame Atomic Absorption 
Spectrometry (FAAS). In these examples, it is considered 
equal uncertainties in both variables. 

 

4. RESULTS AND DISCUSSION 

4.1. Comparison of two methods 

The level of phytic acid in urine samples was 
determined by a catalytic fluorimetric (CF) method, and 
the results are compared with those obtained using an 
established extraction photometric (EP) technique. The 
results, in mgL-1, are means of triplicate measurements, 
Table 2. 

Table 2. Comparison of CF versus EP [3] 

EP CF EP CF 
1.98 1.87 0.13 0.14 
2.31 2.20 3.15 3.20 
3.29 3.15 2.72 2.70 
3.56 3.42 2.31 2.43 
1.23 1.10 1.92 1.78 
1.57 1.41 1.56 1.53 
2.05 1.84 0.94 0.84 
0.66 0.68 2.27 2.21 
0.31 0.27 3.17 3.10 
2.82 2.80 2.36 2.34 

 
ODR line: xy 996.0056.0ˆ +−=  

( ) ( )0.007 ,119.0 063.0056.00 −±−=bCI  

( ) ( )1.036 ,955.0 040.0996.01 ±=bCI  

Based on equation (9), as the confidence intervals 
include the optimal parameters for the slope 1b and 

intercept 0b , 1 and zero respectively, from the orthogonal 

regression of the data from calibration, showing 
equivalence in between methods.  

If t-test was used, what is incorrect, the comparison of 
the methods would not be considered equivalent, because, 
to the 95% confidence level because the values of t 
calculated (3.59) is higher than the t critical (2.09). 
 
4.2. Data calibration for the determination of copper 
content in waters by FAAS 

Data regression from Table 3 shows that there is no 
difference between ODR coefficients and the OLS one, 

because 22
xex ss  is very close to zero. So, in this case, the 

uncertainty in x-axis can be negligible in the regression of 
the analytical curve. 
 

 

 



Table 3. Analytical curve for the determination of copper content in 
waters by FAAS 

Concentration, 
mg mL-1 

Absorbance 

0.10 0.0081 0.0079 0.0080 
0.25 0.0206 0.0205 0.0202 
0.50 0.0391 0.0394 0.0398 
0.75 0.0596 0.0591 0.0590 
1.00 0.0782 0.0790 0.0792 

 
OLS line: xy 0784.00004.0ˆ +=  

ODR line: xy 0784.00004.0ˆ +=  

   

5. CONCLUSION 

This work shows us to different ratios of 2

2

x

ex

s
s , the 

proportion that ODR moves away OLS. 
There is need to evaluate the impact of uncertainty on 

x-axis before performing linear regression once the 
inadequate application of regression may lead to different 
conclusions. 
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