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Abstract: The least squares regression of data with error
in x andy should not be implemented by ordinary least
squares (OLS). In this work, it is discussed ortag
distance regression (ODR) as an alternative appraac
order to take into account the uncertaintyxiwvariable.
The first example, comparison of two methods, shithas
ODR technique leads to a difference conclusion than
test. The second case study, an analytical cuh@ys
that when the variance of the replicates in a sirglalue

is tiny, when compared with the variance framariable,
there is no significant difference between ODR éanids
coefficients because the uncertainty is negligitbe-axis.

Key words: orthogonal distance regression, least squares
regression, uncertainty in both variables, equivedeof
the methods.

1. INTRODUCTION

Classical univariate regression is the most used
regression method in Analytical Chemistry. It isgelly
implemented by ordinary least squares (OLS) fitting
using npoints (xi,yi) to a response function, usually

linear [1] and handling homoscedastic data. InWay, it
is estimated the amount of the unkno(vg) from one or

more measurements of its respor(gg). The algorithms

for carrying out such analytical curve have beerl we
established in the literature. When the data are
heteroscedastic, the Analytical Chemistry uses ke
linear regression.

But a problem remains in the analytical community:
the uncertainty inx-axis. Classic linear regression,
available in commercial softwares, assumesxhairiable
errors are negligible, that is, error-free [1-2].

As analytical methods usually have to be applicable
over a wide range of concentrations, a new mettsod i
often compared with a standard method by analykis o
samples in which the analyte concentration may wasr
several powers of ten. In this case, it is inappedg to
use the pairedt-test since its validity rests on the
assumption that any errors, either random or syaiem
are independent of concentration [3]. Over widegesnof
concentration this assumption may no longer be. thue
second problem appears when, certified reference
materials are not available, and that usually legigible
uncertainty, in order to carry out an analyticaiveu So,

beyond the uncertainty derived from the signatiitst be
considered the uncertainty fromaxis. In these cases,
OLS should not be used, so the literature suggests
carrying out orthogonal distance regression (ODRje

aim of this work is to suggest how to handle thesses
when uncertainties in both variables are considered

2.METHODOLOGY

2.1. General

Generally, it is assumed that only the response
variables, y, is subject to error and that the predictor
variable, x, is known with negligible error. However,

there are situations for which the assumption tkats
error free is not justified. In these situationgsirequired
regression methods that take the error in bothalstas
into account. They are called errors-in-variables
regression methods.

If n;, represents the true value gf and & the true

value of x;, with & and ¢, the experimental errors,

respectively, then:y; =by +bx; +( bp'l) where the
last term represents the experimental errors. Tited f
line is then the one for which the least sum ofasqgd,
dis, is obtained and the method has been called
orthogonal distance regression (ODR). This is emjaivt

to finding the first principal component of a datat
consisting of 2 variables andsamples [4].

2.2. ODR statistics

The expression of the function of the likelihood
method, when it is consider@dpairs of valuesx, y;) and
a multidimensional model suitable to describe
experimental data fluctuations, is the multivarintgmal

[5]:
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Both variables are affected by random measurement
errors:x variable,c% =o. andy variable,c? =05 .

If it is considered that both variances of the ablés
are constants2 =0 and its known rate ig. This ratio

can be defined as:
(2

Applying (2) in (1):
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And its logarithm is given by:

1By 1%.%)= -nlog(2n9)-2log(k)
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Maximizing (4), the log likelihood function, in iion
to the disturbing parameters [Ei],(i :

i =By ~a)
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Substituting equation (5) in equation (4), it igaibed
the profiled log likelihood function that is funeti only of
a, f andé.

Deriving this new equation in relation of theseethr
parameters and equalizing the derivatives to zethe-
approach of Deming [7] estimatég, equation (6):
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variable respectively;

cov(y, x)= (Z (yi —y)(xi —7())/ (n—l) the covariance of
y and x.

Since both variables are affected by random
measurement errors and the simplest case is when

o?=0%, an unbiased estimation of the regression

coefficients can be obtained by minimizinEdiz, ie.

the sum of the squares of the perpendicular dissaffom
the data points to the regression line, wheate is
determined perpendicular to the estimated line [4].
The expression fob, and by, are:
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2.3. Confidence intervals

To test for bias, i.e. equivalence of the methods
compared, the 95%-confidence intervals of the patars
from the linear equations/ = b, +b;x obtained after the

orthogonal regression were used to test whether the
optimal parameters df, = 0and b, =1are included in the

spanned confidence intervals (CI) [8]:

Cl(by) =ty £ tp ¢ X Sy, andCl(by) =by +tp ¢ x5, (9)
t= Student t-factor with:p= 95%; f =n-2; s, and
S, =standard deviation of the parametégsand b, .

The ideal values of &, =0 and b, =1 imply no bias

between the compared methods, i.e. equivalencéaedn t
calibration results. A fail of the test for the suintercept
b, imply a systematic bias, e.g. caused by a wroagkdl

correction of one method. If the test fails for thepeb, ,

this implies a proportional bias. Combinations loé two
errors can also appear.

2.4. OLS versus ODR

Mandel [9] considers an approximate relationship
between the ordinary least squares sldpléOLS), and

the orthogonal distance regression slom@(ODR) in
(10):
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Where s2, is the variance of a singlex value

by (ODR)= (10)

(involves replicate observations of the sameand sf is
the variance of thes variable.

Table 1 shows the relation betwesfy and the ratio

bl(OD%(OLS)’ when a perfect system is considered,

that is s? is constant and equal to 1.

, 2 ODR
Table 1. Relation between % and by )bl(OLS)

< bl(ODFy

s2 by (OLS)
0.00 1.00
0.01 1.01
0.10 1.11
0.20 1.25
0.25 1.33




0.33 1.50
0.50 2.00
0.70 3.33
0.90 10.0

_ 2 ODR
Figure 1 shows that% and by %l(OLS)

have a behavior that is close to the linearity, nviiee
variance of a singlex value is lower than the variance of
the x variable that is from 0.0 to 0.2.

13 y =1.2239x +0.9973
1.25 R?=0.9976

i 122%
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Fig. 1. Linear relation between % and bl(ODR)bl(OLS)
X
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When the Sex , increases up to 0.5, the best

regression seems to be quadratic, Figure 2.

y = 2.5171x? + 0.6976x +1.006
9 R =0.9987
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Fig. 2. Quadratic regression between s% and bl(ODR)
s
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As % gets close to the unlt)},)l( %l(oLs)

grows rapidly up to infinity, Figure 3.
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Fig. 3. bl(ODR)b_L(OLS) tending to infinity

3. CASE STUDIES

Two case studies using ODR are discussed, in this
work. At first, a catalytic fluorimetric method c®mpared
with a photometric technique for the determinatidrihe
level of phytic acid in urine samples and secontig
regression of an analytical curve for the detertimmaof
copper content in waters by Flame Atomic Absorption
Spectrometry (FAAS). In these examples, it is cdersd
equal uncertainties in both variables.

4. RESULTSAND DISCUSSION
4.1. Comparison of two methods

The level of phytic acid in urine samples was
determined by a catalytic fluorimetric (CF) methaahd
the results are compared with those obtained uaimg
established extraction photometric (EP) technidliee
results, in mgl}, are means of triplicate measurements,

Table 2.
Table 2. Comparison of CF versusEP [3]

EP CF EP CF

1.98 1.87| 0.13 0.14
231 2.20| 3.15 3.20
3.29 3.15| 272 270
3.56 342 231 243
1.23 110 192 1.78
1.57 141 156 1.53
2.05 1.84| 094 0.84
0.66 0.68| 227 221
0.31 0.27| 3.17 3.10
2.82 2.80] 2.36 2.34

ODR line: y = -0.056+ 0.996x
Cl(b,) = —0.056+ 0.063(- 0.119,0.007)
Cl(b,) = 0.996+ 0.040(0.9551.036

Based on equation (9), as the confidence intervals
include the optimal parameters for the slopeand
intercepthy,, 1 and zero respectively, from the orthogonal

regression of the data from calibration, showing
equivalence in between methods.

If t-test was used, what is incorrect, the comparigon o
the methods would not be considered equivalent s
to the 95% confidence level because the valueg of
calculated (3.59) is higher than theritical (2.09).

4.2, Data calibration for the determination of copper
content in waters by FAAS

Data regression from Table 3 shows that there is no
difference between ODR coefficients and the OLS, one
becauses? /s? is very close to zero. So, in this case, the

uncertainty inx-axis can be negligible in the regression of
the analytical curve.



Table 3. Analytical curvefor the determination of copper content in

watersby FAAS
Concentrz_altlon, Absorbance
mg mL
0.10 0.0081 0.0079 0.0080
0.25 0.0206 0.0205 0.0202
0.50 0.0391 0.0394 0.0398
0.75 0.0596 0.0591 0.0590
1.00 0.0782 0.0790 0.0792

OLS line: y =0.0004+ 0.0784x
ODR line: ¥ = 0.0004+ 0.0784x

5. CONCLUSION

2
This work shows us to different ratios % , the
X

proportion that ODR moves away OLS.

There is need to evaluate the impact of uncertainty
x-axis before performing linear regression once the
inadequate application of regression may lead fferént
conclusions.
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