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Abstract: The thermal flow measurement is based on the 

cooling effect of a fluid in a heated transducer.  The sensor 

used suffers a strong influence of the fluid temperature, 

especially at low rates.  In this work, a neural network is 

trained to learn the errors in the measurements due to the 

simple thermal model used. The neural network was able to 

correct the errors and achieve a accuracy bellow 5%. 
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1. INTRODUTION 

The fit of a measurement device is the procedure applied 

on a measurement device to make its performance suitable 

to a specific application [1]. When the calibration curve is 

non linear or presents a high drift, the fit procedure may 

represent an undesired cost. Thus, if the sensor presents an 

auto-fit capability, it will decrease the need for calibration 

on site.  Auto-fit is also called Auto-Calibration or Self-

Calibration. However, this is not in agreement with VIM 

[1]. The sensor studied suffers a strong influence of the fluid 

temperature due to its simple thermal model, leading to 

severe errors, especially at low rates. A neural network is 

trained to learn these errors and correct the flow values 

calculated thought the simple model. The achieved results 

show that the use of the neural network was useful in 

decreasing the errors in the flow measurements. Without the 

neural network correction, the error was greater the 20% of 

the measured value. After the use of the neural network, the 

maximum error is below 5% of the measured value.  

2. THERMAL FLOW MEASUREMENT 

The studied sensor is built using a small section of 

stainless steel tube (AISI304) with heat resistance wrapped 

around. This sensor is heated and kept in a constant 

temperature difference from another sensor that does not 

have the heat resistance and it is used to measure the fluid 

temperature. Using the temperature and the power in the 

heat resistance, it is possible to infer the flow value. 

3. INTELLIGENT SENSORS 

The progress of microelectronics in the last decades has 

allowed the development and fabrication of intelligent 

sensors. While a standard sensor is only capable of 

converting the physical variable input into a signal variable 

output, an intelligent sensor is an integrated system which    

comprehends the transducer, the signal conditioning circuit, 

and a microprocessor module that allows the designer to 

embed the necessary intelligence.  

 Honeywell introduced the first intelligent sensor in the 

market in 1983 [2]. It was a pressure sensor that also 

presented a temperature sensor. The measured temperature 

was used to compensate the errors in the pressure 

measurements due to temperature. The compensation was 

done by a microcontroller that also converted the 

compensated signal to 4-20 mA. 

From that time on, the continuous evolution of the 

processing capabilities has allowed the inclusion of new 

functions in the intelligent sensors such as: filter, self-test 

and self-adjust.  

. 

4. NEURAL NETWORK 

An Artificial neural network (ANN) is a massive parallel 

system [3] composed of many simple processing elements 

(neurons) whose function is determined by the network 

architecture, connection strengths (synaptic weights) and the 

processing performed at the neurons. Neural networks are 

capable of acquiring knowledge through a learning process 

and to store that knowledge in the synaptic weights. One of 

the most successful neural network architecture is the 

multilayer perceptron (MLP). It has been successfully 

applied to a variety of pattern recognition problems in 

industry, business and science [4]. This ANN is a feed-

forward network and is organized in layers: an input layer, 

hidden layers and an output layer. Only the hidden and the 

output layers present neurons (Figure 1).  

 

 
Figure 1 – Multilayer Perceptron Architecture. 

 

 



 

It is possible to have an arbitrary number of hidden layers, 

but the majority of application only needs one hidden layer. 

Typically, MLPs are trained using an algorithm called 

backpropagation [3]. This is a supervised training procedure 

that is divided in two phases: forward and backward. In the 

forward phase, the data presented in the input layer are 

processed by the hidden layers up to the output layer, where 

the generated outputs are compared with the desired outputs 

and an error signal is calculated. In the backward phase this 

error is passed backward to update the synaptic weights in 

order to decrease the output error. This procedure is repeated 

through several cycles (also called epochs) until a stopping 

criterion is achieved.  

One of the most important features of a neural network is 

the ability to generalize what it has learned from the training 

procedure. This allows the network to deal with noise in the 

input data and to provide the correct outputs to new data 

patterns, i.e, data that were not used to train the network.  To 

obtain a network with good generalization capabilities, one 

has to avoid the overfitting. It happens when the network 

presents an extremely low error in the training set but does 

not perform well when it is presented to new data patterns. It 

means that the network has memorized the training 

examples but did not learn the relation between the input 

and the output. One procedure that is normally used to avoid 

overfitting is called Early Stopping [5]. In this procedure, 

the data is divided in three sets: training, validation and test. 

The training set is used to update the synaptic weights in 

order to reduce the training error. The error in the validation 

set is monitored during the training procedure, if this error 

starts to grow, this can be an indication that there is 

overfitting. The third set (test set) is used to evaluate the 

capacity of generalization of the trained network. 

 

5.  SELF-ADJUSTING ALGORITHMS 

In the literature, it can be noticed that ANNs are capable 

to perform different functions that can be easily integrated in 

a sensor, such as auto-fit [6], [7], [8], [9], [10], drift 

prediction [11], fault detection [12], calibration monitoring 

[13], and transducer linearization to compensate the 

influence of other physical variables [14]. 

In the proposed method, a multilayer perceptron neural 

network is used to correct the errors due to the simple 

model. Similar application can be seen in Barbosa et al [8] 

and in Patra et al [9]. In the proposed method, the ANN 

training (Figure 2) was done using the temperature and 

power as inputs and the error between the flow value 

calculated in the thermal model and the Venturi device. So, 

the ANN can learn the error due to the model and correct it 

when the sensor is in normal operation. The data set for 

training the ANN was obtained from a calibration procedure 

with 14 points in the 0,00375 Kg/s - 0,01275 Kg/s range, for 

each one the following fluid temperatures  35, 40, 45 e 50 

ºC.  Thus, the training set has 56 points.  

An important step in the ANN design is the choice of the 

model complexity, i.e, the number of neurons in the hidden 

layer.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 - Network design 

It is done with the help of the cross-validation [15]. It is a 

technique to estimate the performance of a model. The 

available data set is divided in a fixed number of folds. For 

each one of the folders, a different network is trained with 

the remaining folders are used as training and validation sets 

for Early Stopping. The error estimates (or the output of 

other performance evaluation function) of the networks in 

each folder are averaged and used as an estimate the overall 

performance. After experimenting different number of 

neurons in the hidden layer, it is chosen the number that 

gives the best performance, which usually is the smallest 

error.  

Once the number of neurons is chosen, three ANNs are 

obtained using different training strategies.  The first one, 

NN1, is obtained by keeping the network that presents the 

smallest error in cross-validation. The second network, 

NN2, is obtained using the entire dataset. The number of 

epochs used for training NN2 is given by the average 

number of the training epochs of all trained networks during 

cross-validation. Finally, the third network, NN3, was 

trained with the Bayesian Regularization. This training 

procedure forces the network to have smaller synaptic 

weights, which produces smoother outputs, decreasing the 

possibility of overfitting [16]. 

. 

6.  EXPERIMENTAL EVALUATION 

  

The fluid in the experimental evaluation was air and 

calibration procedure was done using a Venturi device as 

reference. In the test bench, the two flow meters are in 

series, which allows simultaneous readings of both meters 

by control software. There were acquired 14 points in 

0,00375 kg/s - 0,01275 kg/s range, for each one  the 

following fluid temperatures  35, 40, 45 e 50 ºC. The 

calibration results can be seen in Figure 3. It can be seen that 

without correction, the thermal flow meters presents was 

greater the 20% of the measured value.  
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Figure 3 - Calibration without Neural Network Correction 

Therefore, it is necessary to perform a correction 

procedure, which will be performed by the neural network. 

6.1. ANN Design 

 The following procedure was executed to design an 

ANN that will perform the correction: 

• Choice of the training algorithm: The 

“Levenberg-Marquardt” algorithm was chosen 

because it presents a faster convergence time 

and also the lowest error. Besides, this method 

works extremely well in practice, and is 

considered the most efficient algorithm for 

training median sized ANNs [6], [17]. 

• Choice of the differential temperature: Without 

correction, the smallest errors occur at de 25 ºC, 

so this is the value chosen. 

• Definition of K folds for cross-validation. The 

usual choices are K = 5 or K = 10. Since the 

available dataset is small, it was chosen K = 5. 

• Definition of the number of repetitions. In order 

to reduce the variance in the cross-validation, it 

has to be repeated several times. The usual 

choice of the number of repetitions is 10 [15]. 

• Choice of the number of neurons in the hidden 

layer. There were performed several 

experiments varying the number of neurons 

form 1 to 20. The choice of number of neurons 

was based on the smallest error in the cross-

validation.  

• After the definition of the parameters (“K”, 

number of repetitions, number of neurons, 

differential temperature), three networks NN1, 

NN2 and NN3 were trained using different 

strategies (see Section 5) and the errors were 

compared.  

 

In all experiments, the procedure was repeated three 

times to access its repeatability. In Figure 4, one can see the 

results of experiment used to choose the number of neurons 

in the hidden layer.  In this figure, it can be seen the average 

normalized errors and the standard deviation for three 

repetitions of the procedure. The average normalized error is 

defined as average squared error for normalized outputs 

between -1 and 1. 
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Figure 4 – Choice of the number of neurons 

 

In the figure 5, there is a performance comparison of the 

ANNs NN1, NN2 and NN3. The best results were obtained 

with the NN1 network.  
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Figure 5 - Comparison between neural networks  

 

The ANNs trained to perform the correction were used 

to perform the necessary corrections. Figure 6 shows the 

correction value as a function of the power and the fluid 

temperature. The figures 7 and 8 show the correction 

function for NN2 and NN3, respectively.  It can be seen that 

the correction function is smooth, which demonstrates the 

absence of overfitting. One can also note that the correction 

function has higher values in the temperature extremes, 

especially in low power (smaller flow).  

In a preliminary analysis in the surface correction plot, it 

can be seen:  NN2 has a very smooth surface, which could 

be an indication of an under fitted model, that is, the ANN 

was not able to learn the appropriate correction function. It 

also presents the higher average error. The surface for NN3 

indicates that it presents a slightly better correction 

capability and the NN1 presented the best results performing 

the correction as needed and in accordance with the Figure 

5. 

6.2. Flow Calibration (Intelligent) 

Another calibration was performed in thermal flow 

meter, but at this time it was using the correction performed 

by the neural network. In the figures 9, 10 and 11, one can 

see the measurements errors in all temperature and flow to 

the three networks: NN1, NN2 e NN3.  

 



 

Figure 6 - Surface correction of Neural Network (NN1) 

Figure 7 - Surface correction of Neural Network (NN2) 

Figure 8 - Surface correction of Neural Network (NN3) 
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 Figure 9 - Calibration with NN1 correction 
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 Figure 10 - Calibration with NN2 correction 
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Figure 11 - Calibration with NN3 correction 

 



7.  CONCLUSION 

A survey in the literature has shown the increasing 

utilization of neural networks in several applications using 

intelligent sensor such as: auto-fit [6], [7], [8], [9], [10], drift 

prediction [11], fault detection [12], calibration monitoring 

[13], transducer linearization to compensate the influence of 

other physical variables [14]. 

It was proposed a framework where a neural network 

learns the measurement errors in relation to a reference, in 

order to be able to correct these errors when the meter is in 

use.  

This framework was used to correct errors on PT-100 

sensors and the results were published [7] and [10]. 

In this work, this framework is used to correct the 

measurement errors in a thermal flow meter. Three different 

neural networks were evaluated. The first ANN is the one 

that presents the smallest average squared error in the 

repetitions of the cross-validation. The second ANN was 

trained using all available dataset for the average number of 

epochs found in the cross-validation, and finally the third 

one was trained using Bayesian Regularization.  

Although, not all ANNs were capable of correcting the 

errors to obtain a reasonable accuracy (5%), all of them 

were able to improve the accuracy of the proposed flow 

meter. The next steps in the development of the system will 

deal with more extensive experimentation with other neural 

networks architectures and other training strategies. 
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